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APPROXIMATION FOR THE INVERSE OF THE

KLEIN-NISHINA PROBABILITY DISTRIBUTION

by

C. J. Everett

E. D. Cashwell

ABSTRACT

Approximate formules, convenient for machine computation, and required
in Monte Carlo practice, are given for the inverse of the Klein-Nishina proba-
bility distribution, permitting the direct determination of the energy E' of a
Compton-scattered photon, from a uniformly distributed random number. The
relative error does not exceed 3.2% over the range 0.001 < E < 100 MeV of inci-
dent photon energles, and is usually much less, being at most 1%, for example,

when E' 2 .3E and E/mc2 > k.

1. Analysis of the Klein-Nishina cross sec-

The K-N cross section for scattering of a

tion.
photon of "energy'a = E/mcz, on a free rest-electron,
at an angle 0 within du of 4 = cos O from its line
of flight, is given by

2 a'2 a', a 2
ola,u)dy = 7r (-&-) PRl -1 »du, -1 £ u s,

where o' = a/{1+a(1-u)} is its final "energy" o' =
E'/mc2, end r = e2/m<:2 & . gox10”13

tron "radius."

em is the elec-

With o fixed throughout, we define x =
1/{1+a(1-p)}, and &(a,x)dx = of{a,u)du.

i

Thus U

1+t - oY, au/ax = o732, end F(a,x)ax =
'rfrza_l{x+x_l+u2-l}d.x, with an associeted probability
density
- . = 1 %
p(x)ax = £(x)dx/F(§); & =557 S x S 1,

vwhere f(x) = x+x~l+u2-1, u= l+u_l-u_lx'l, and

1
Na=£ﬁﬂu5&

The Monte Carlo method of sampling for x = a/o

consists of solving the equation
1

r = F{x)/G; F(x)Ef f{x)dx
x

for x in terms of a random number r, equidistributed

on [0,1].
inverse function x = F_l(y) = Q(y) of ¥
and to take x = F_l(Gr) = Q(Gr).

Since U - 1 = o T(1-x"1) and p + 1

Our obJect here is to approximate the
F(x) s

it

)

2+ ot - ot = o ewr-h) = o HELY),
we have
£(x) = wx"t 4 a2 (- ) (£ ) Eexsl, <1 (1)

with £(£) = £+ £75 > 2 = £(1).
Differentiation yields
' (x) = 1—x'2+a-2x_2(£—l-2x_l+l)

so £9(E) = (1-£7 1) (g +a7%E72) < 0 ana £'(3) =
207t > 0.

Moreover, f (x) = 20L—2x_h{(a2-§_l-l)x"‘3} >0
on [£,1), since Ala) = o - E_l c1=0d2-20-2 2

A(1) = - 3, and for 0 < &
2 - 3x 2 - 3. Thus £'(x)

a=1and x = 1.

x £ 1, one has Ala)x

L
2 0, with equelity iff

Finally, f(x) = - 60!._2x_5{A(<1)x+1&} < 0 on
[g,1].

Integration of f(x) = x+0._2£_1+0.-2l-\(0.)x_1+
a2x? gives

F(x) = %(1—x2)+a'2€'1( 1-x)+a 2a(a)10g X7 (2)

+ o 2(x 1)




= (1-2a_l—2a_2)lo¢ <1+ -;‘-(1—::2)

+ o B a-x)+ (x1))

Hence F(E) = (1'23—1"‘2“-2)108 E-l + 523 (5-2-1) R
2072(g71), 0
6 = F(§) = (1-20" -20")10g (2a+1) + 2aHL)
(2a+1)
+ ™ F(1) = o (3)
These remarks show that F(x) decreases from
F(E) = 6 to F(1) = 0, with F' (x) = - £(x) <0,

F'E) = - £(8) = - (B+671) <2 = - £(1) = F (1),
and has & unique inflection point at the minimum
of £(x), i.e., at the zero of f' {x). Moreover,
F(x) is concave up to the left,. and concave down
to the right of the inflection point. The rela-
tions are indicated below in a qualitative way.

(The 0.3 and F of the figures apply only in the case
o > 7/6 of Sec. 2.)

£(x)

£(x)

y = F{x)

2. _The spproximation Q(y). Case I. (a > 7/6).
Guided by the graphs of Ref. 1, We assume log O(E’)
= _ log E' + c, for ¢ > 7/6 and E' g 0.3E, i.e.,
for x § 0.3. Note that, for a > 7/6, £ = 1/(20+1)
<0.3<1 and 0.3 is on (£,1). 8ince o(E")=C, f(x)
and E' = C,x, this implies log f(x) = - log x + Cy
= log Cx—l-, so that f(x) = cx ! on [£,0.3]). Hence

F(x) = flf(x)dx= fo'3+ _/0-13’ F(0.3) + fo'sc{ldx,
X X . X

and

y = F(x) «F + C log (0.3/x); £ < x<0.3,

where F = F(0.3), and the relation is exact at x =
0.3. We make it exact at x = § also by defining

C = (G-F)/log(0.3/8).

Hence we have x = F_l(y) -«
Q(y) = 0.3 exp[-(y-F)log(0.3/8)/(G-F)]; £ ¢ x 5 0.3,

G2y 2 F. Inprectice, therefore, we obtain from

r = F(x)/G the approximetion x = Q(Gr) =

0.3 exp(-A(r-J)], where J = F/G, A = log(0.3/£)/(1-J),
and 1 2 r 2 J. Substitution in Eq. (2) yields the re-
quired

F = F(0.3) = 1.65898 - 1.007960[_1 + .62537a'2,

while G is given by Eq. (3).

For y = F(x) on 0.35x g 1, we know F(0.3)=F,
F'(0.3) = -£(0.3) = -f, and F(1) = 0, F'(1) = -£(1) =
-2. We assume a cubic Q(y) = a.o+aly+a2y2+a3y3, with
QF) = 0.3, Q'(F) = -1/f, and Q(0) = 1, Q'(0) = - 1/2.
Thus Q and Q' are exact at the end points of [0,F],
and one finds a; = 1, a) = ~1/2, Fa, = F+(F/)-2.1,




.-

3

Foa, = =(F/2)-(F/f)+1.4. Ve may therefore write Q

3
in the convenient form

Ay) = 1 - (F/2)(y/F) + (Fe,)(y/F)% + (FPa ) (y/m)3,
We require from Eq. (1) the value

£ = £(0.3) = 3.63333 - L.6666Ta" + 5.4444N"2,

Thus for r = F(x)/G on J 2 r 2 0, we shall have
X = F_l(Gr) =

_ 2 2,/n3 3
aler) = 1-(F/2) (r/3)+(Fay) (r/3)“+(Fa ) (x/0)",
where J = F/G as before.

Cese II. a < 7/6. Now 0.3 § £ < 1, and we use
a single, cubic approximation over the whole range
which is exact, together with its derivative, at
the end points. Demanding that

~ 2 3 _ ’ _ -
Ay) = aj*taytasy tey”, Q(e) = g, @'(@) = - 1/£(&) =

-1/f, and Q(0) = 1, Q'(0) = - 1/2 determines a. = 1,

]

= -1/2, 6%a, = GH(G/£)-3(1-E), Ca, = -(c/2)-

81 3
(G/£)+2(1-E), vhere now £ = £ + £ -. Hence

QAy) = 1-(6/2)(v/6)+(6%a,) (v/6)%+(6%,) (y/6)

and for arbitrary r on [0,1] we take x = Fi(cr) =

Q(Gr) = l-(G/2)r+(6282)r2+(G3a3)r3.

3. Monte Carlo method for x in terms of r.

These considerations lead to the following routine
(page 4) for the approximate determination of x =
a'/a in terms of r = F(x)/G.

4. Test for accuracy of Q(y). 1In Case I

(oo > 7/6) the method consisted of assigning to x
the 15 values X, = i, 0.9, 0.8, ..., 0.3; 0.3,
0.3-8, 0.3-28,..., 0.3-68 = &, and computing for
each @ = 1.18, 1.20, 1.22, .-+, 1.98; 2, 4, 6, «..,
200, the exact value of y, = F(xi) from Eq. (2),
the corresponding approximaetion xi'= Q(yi); and the

relative error e, = (xiin)/xi, where necessarily

e, = e8 = e9 = e15 = 0. The same method wes used

in Cagse II, with X = 1, 1-6, 1-26,++, 1-108 = &
and o = 0.002, 0.022, 0.042,..., 1,162,

A machine computation by D. Turner ghowed all
]ei‘ < 0.032 in Case I, the maximum appearing at
a = 1.k22, x; = 0.6. For a2k and x; 2 0.3 no |ei]
exceeded 0.01, while for each x, £ 0.3, each lei[
reached its maximum at o = 200. In Case II, the

maximal error e = - 0.031 appeared at the center of

the range for o = 0.842. In both cases the average
error is far less than the maximum.

A1l previous Los Alamos photon routines have
employed approximations for the inverse function
by Carlson2 for 0. & L (meximum error = 6%) and by
E. D. Ceshwell (cf. Ref. 3) for 4 < o € 24 (meximum
error = 4%), The present formulas permit efficient
Monte Carlo treatment of Compton collisions from
1 keV up to 100 MeV, the extent of existing cross-
section tables, with error, in the sense described,

not exceeding 3.2%.
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